
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Analytical Characterization of End-to-End
Communication Delays with Logical Execution

Time
Jorge Martinez, Ignacio Sañudo, Student Member, IEEE, and Marko Bertogna, Member, IEEE

Abstract—Modern automotive embedded systems are com-
posed of multiple real-time tasks communicating by means of
shared variables. The effect of an initial event is typically
propagated to an actuation signal through sequences of tasks
writing/reading shared variables, creating an effect chain. The
responsiveness, performance and stability of the control algo-
rithms of an automotive application typically depend on the
propagation delays of selected effect chains. Indeed, task jitter
can have a negative impact on the system potentially leading to
instability. The Logical Execution Time (LET) model has been
recently adopted by the automotive industry as a way of reducing
jitter and improving the determinism of the system.

In this paper, we provide a formal analysis of the LET
model for real-time systems composed of periodic tasks with
harmonic and non-harmonic periods, analytically characterizing
the control performance of LET effect chains. We also show
that by introducing tasks offsets, the real-time performance of
non-harmonic tasks may improve, getting closer to the constant
end-to-end latency experienced in the harmonic case. Further, we
present a heuristic algorithm to obtain a set of offsets that might
reduce end-to-end latencies, improving LET communication
determinism. Finally, we apply this technique to an industrial
case study consisting of an automotive engine control system.

Index Terms—Real-Time Systems, Schedulability Analysis,
Embedded Systems, Automotive, Task Partitioning

I. INTRODUCTION

In the AUTOSAR1 model, the typical way tasks com-
municate is through shared variables, i.e., labels, that are
written/read by two or more runnables. Different communi-
cation patterns are used in the automotive industry to ensure
a consistent communication between tasks, each having a
different impact over the communication latencies experienced
by tasks accessing the same shared variable [1][2].

Automotive applications are particularly concerned with
optimizing end-to-end propagation latencies of input events
that trigger a chain of computations, leading to a final actuation
or control action. An effect chain (EC) is defined as a chain
of reading/writing operations, typically triggered by a given
event, where a task writes a label, which is then read by a
second task; this latter task processes the read variable, and
then writes a different label, which is then read by a third
task. And so on, until the end of the chain. Usually, each
chain is associated to given timing constraints that reflect the

This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue

1https://www.autosar.org/

dynamics of the controlled system. The amount of time that
elapses from the first input event until the end of the chain may
significantly affect the control performance of the considered
application [3][4].

Lately, there has been an increasing interest in the LET
model in industrial domains, such as automotive [5] and
avionics [6] [7], thanks to the improved determinism that
can be achieved. In a real-time context, the LET semantics
fixes the time it takes from reading task input to writing task
output, regardless of the actual execution time of the task. Due
to its semantics, the LET communication may lengthen the
end-to-end latency of an effect chain in comparison to other
communication patterns [2]. Moreover, if the effect chain is
composed of tasks with harmonic periods, then the end-to-
end latency is always constant. However, if one pair has non-
harmonic periods, then the end-to-end latency may vary due
to the misalignment of the task periods. We therefore seek
a method that aims at reducing this misalignment, and so
shortens, and might even stabilize, the end-to-end latency of
an EC that obeys the LET semantics.

Offset assignment [8] is a well-known technique that has
been adopted in the past to reduce the output jitter of a task,
interact with slow devices, establish precedence constraints,
obtain resource separation, increase feasibility bounds, and
shorten worst-case response times (WCRT) [9]. Static and
dynamic offset assignment has also been studied in the context
of multiprocessor and distributed systems [10]. Recently, there
has been a revival of interest in this technique to achieve
efficient and effective non-preemptive scheduling by using a
First-In-First-Out (FIFO) scheduling policy [11].

In this paper, we show that communication determinism
may be improved by combining static offset assignment with
the LET model. To that end, we present a novel heuristic algo-
rithm to assign task offsets to reduce not only task WCRTs, but
also end-to-end latency and jitter. We show that the proposed
algorithm may achieve comparable performance of a brute
force method that explores the whole design space, but with a
much more reasonable computational complexity. The paper
is organized as follows. The following section introduces the
rationale behind the use of LET in the automotive domain.
Section III presents the state-of-the-art with relation to the
LET paradigm, the offset-based analysis for static priority task
systems, and offset assignment methods. Section IV presents
our scheduling model and the LET semantics, introducing the
concept of publishing and reading points. Section V derives an
exact end-to-end analysis of tasks obeying the LET semantics,



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

presenting the advantages of an offset-aware LET model. A
heuristic algorithm is then presented in section VI to compute
a set of offsets that improves real-time performance and
control determinism. An experimental characterization of our
heuristics is presented in section VII using an automotive
industrial case study consisting of an engine control system
provided by Bosch [5]. Finally, section VIII presents our
conclusions and directions for future works.

II. MOTIVATION

In an AUTOSAR application for the automotive domain,
the smallest functional entity is called runnable. Runnables
having the same functional period based on control dynamics
are typically grouped into the same task. In the simplest case,
one functionality is realized by means of a single runnable.
Nevertheless, more complex functionalities are typically ac-
complished using several communicating runnables, possibly
distributed over multiple tasks. Given an existing operational
system, new functionalities are typically added by the addition
or replacement of runnables, potentially modifying task com-
putation times. These modifications may have a big impact on
the end-to-end latency of a given effect chain.

Consider the example in Figure 1, where an effect chain
composed of τ1, τ2 and τ3 is shown. Task τ1 has a runnable
writing a label that is then read by τ2; this latter task processes
the read variable, and then writes a different label, which is
then read by a runnable in τ3. In the end, this runnable outputs
an actuation signal that completes the effect chain. In this case,
the amount of time that elapses from the first input event until
the end of the chain, also known as the end-to-end latency,
is 3. If the computation time of some runnables is modified,
or more runnables are added as in Figure 2, the end-to-end
latency may increase (19 for the case in the figure).

Fig. 1: End-to-end effect chains composed of three tasks with
parameters T1 = 5, T2 = 10, T3 = 20 and C1 = C2 = C3 =
1.

Control tasks are typically executed periodically, i.e., at a
given sampling period. The resulting control performance is
highly dependent on task jitter, task response times, scheduling
policy and end-to-end latency of effect chains. Even a small
change in one of these parameters might be detrimental to
control performance, potentially requiring a system redesign,
with related additional cost and time.

Even with constant execution times, different instances of
the same task might have different response times, leading to

Fig. 2: End-to-end effect chains composed of three tasks with
parameters T1 = 5, C1 = 3, T2 = 10, C2 = 2, T3 = 20 and
C3 = 3.

variable end-to-end latencies of an effect chain. An example
is shown in Figure 3. The LET concept has been introduced
in the automotive industry to explicitly address this issue. The
LET semantics decouples control algorithms from task jitter,
task response times, scheduling policy and hardware depen-
dence, enabling more robust algorithms and more deterministic
and predictable systems, as explained in section IV.

Fig. 3: End-to-end effect chains composed of three tasks with
parameters T1 = 3, T2 = 5, T3 = 6 and C1 = C2 = C3 = 1.

III. RELATED WORK

The Logical Execution Time (LET) paradigm has been pro-
posed within the time-triggered programming language Giotto
[12]. This communication pattern allows determining the time
it takes from reading program input to writing program output,
regardless of the actual execution time of a real-time program.
As stated in [13], LET evolved from a highly controversial
idea to a well-understood principle of real-time programming,
motivated by the observation that the relevant behavior of
real-time programs is determined by when inputs are read
and outputs are written. This concept has been adopted by
the automotive and avionics industry as a way of introducing
determinism in their systems.

In [1], an overview of the different communication patterns
adopted in the automotive domain is provided, highlighting
the importance of end-to-end latency of effect chains in an
engine management system. A method to transform LET
into a corresponding direct communication is also presented,
allowing the use of classic tools (e.g., SymTA/S2) to determine

2https://auto.luxoft.com/uth/timing-analysis-tools/



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

end-to-end latencies and communication overhead. In [14],
an end-to-end timing latency analysis for effect chains with
specified age-constraints is presented. The analysis is based
on deriving all possible data propagation paths which are used
to compute the minimum and maximum end-to-end latency of
effect chains. In [15], the analysis is extended to include the
Logical Execution Time paradigm, providing an algorithm to
derive the maximum data age of cause-effect chains. In [16],
an extension to pyCPA3, an open source tool for compositional
analysis similar to SymTA/S, is presented to compute upper
bounds on the end-to-to latency of effect chains focusing on
Implicit and LET communication. However, none of these
works takes offset assignment into consideration in order to
compute the end-to-end latency of effect chains.

As previously mentioned, offset assignment is a well-known
method to reduce the output jitter of tasks, improving system
schedulability and shortening the WCRT of tasks. A proper
selection of task offsets may increase the predictability of the
system by better distributing the workload over time. In [8],
Tindell introduced the idea of using task offsets to model
periodic transactions of different tasks. An exact response
time analysis (RTA) was proposed for tasks with static offsets,
showing that offsets can be used to reduce the pessimism of
the classic response time analysis. Unfortunately, the presented
RTA is computationally intractable but for small tasks sets.
Therefore, an approximate RTA was also proposed. Later on,
Palencia and Harbour [17] extended the approximate RTA of
Tindell by analyzing tasks with static and dynamic offsets
for distributed systems. While the static analysis assumes that
offsets are fixed from the transaction release, dynamic offset
analysis considers that offsets may change from one activation
to another. In [18], a method is described to perform exact
RTA for fixed priority tasks with offsets and release jitter
based on the work in [17]. Recently, a RTA aware of end-to-
end timing requirements has been published by Palencia et al.
[19]. In this work, a method is presented to perform an offset-
based RTA for time-partitioned distributed systems. Authors
also considered effect chains with precedence constraints.

In [20], Goossens distinguished between three types of
periodic task sets: (i) synchronous, where the offsets are fixed
and all equal to 0 (O1 = O2 = ... = On = 0); (ii)
asynchronous, where offsets are determined by the constrains
of the system; and (iii) offset-free, where offsets are chosen
by the scheduling algorithm. A method to assign offsets is
presented, proposing different heuristics to determine a static
offset for each task.

The offset assignment problem has also been studied for
the automotive domain. In [21], Grenier et al. proposed the
use of offsets to improve the task schedulability of body and
chassis networks considering CAN-bus related delays. This
technique is used to minimize the WCRT by distributing the
workload over time. An offset assignment algorithm tailored
for automotive CAN networks is presented to improve task
WCRT. Based on this algorithm, Monot et al. proposed in [22]
runnable-to-task allocation heuristics for multi-core platforms,
balancing the CPU load over the system through offset assign-

3https://pycpa.readthedocs.io/en/latest/

ment. Recently, Nasri et. al [11] presented an offset assignment
technique for FIFO scheduling in order to obtain schedulabil-
ity performance comparable to non-preemptive fixed priority
scheduling, while incurring a smaller overhead.

To the best of our knowledge, the present work is the first
study that formally defines an exact offset-aware schedulability
analysis for the LET model. The impact of an offset-aware
LET model on the end-to-end latency of effect chains is
thoroughly analyzed, proposing a heuristic algorithm to obtain
a convenient offset assignment.

IV. SYSTEM MODEL AND LOGICAL EXECUTION TIME

We assume a system composed of periodic tasks and
runnables. Each task τi is characterized by a tuple (Ti, Ci, Oi),
where Ti is the period, Ci is the worst-case execution time
(WCET) and Oi is the initial offset. Deadlines are assumed to
be equal to periods. Each task τi releases an infinite sequence
of jobs, with the first job released at time Oi, and subsequent
jobs periodically released at time ri,k = Oi + kTi. Without
loss of generality, we assume Oi < Ti for all tasks τi.

The hyperperiod of the task system is the least common
multiple of the task periods. In case of a fixed priority
scheduler, the worst-case response time Ri of a task τi with
offset can be computed taking the largest response time of all
the jobs released by τi in a hyperperiod, as described in [18].
In this paper, we are interested in task sets that are schedulable
independently of the offset, i.e. for any task τi: Ri ≤ Ti,∀Oi.
For the fixed priority case, this means considering tasks that
are schedulable in the synchronous periodic case, i.e., when
all offsets are null, which represents a critical instant scenario
[23].

A task can be either a writer or a reader of a label. We
assume there is only one writer per label, while there may be
multiple readers reading that label. All parameters are integer
multiples of the system clock.

In the context of hard real-time systems, the LET semantics
enforces task communications at deterministic times, corre-
sponding to task activation times. LET fixes the time it takes
from reading task input to writing task output, regardless of
the actual execution time of the task. Inputs and outputs are
logically updated at the beginning and at the end of their LET,
respectively, see Figure 4. In this paper we assume that the
LET equals the task period. It is worth mentioning that the
LET paradigm assumes these updates incur zero computation
time. In [2] an implementation is presented that emulates this
ideal behavior by making use of buffers in order to guarantee
the determinism of the communication.

Logical Execution Time
Logical

Physical Execution ExecutionSuspend

Input Output

Time

Fig. 4: Logical Execution Time model.

We hereafter consider the communication between the
writer and one of the readers. Assume the writer and the reader



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

have period TW = 2 and TR = 5, respectively, as in Figure 5.
While τW may repeatedly write the considered labels, these
updates are not visible to the concurrently executing reader,
until a publishing point PnW,R, where the values are updated
for the next reader instance. This point corresponds to the first
upcoming writer release that directly precedes a reader release,
i.e., where no other write release appears before the arrival of
the following reader instance. We call publishing instance the
writing instance that updates the shared values for the next
reading instance, i.e., the writer’s job that directly precedes
a publishing point. Note that not all writing instances are
publishing instances. See Figure 5, where publishing instances
are marked in bold red.

It is also convenient to define reading points QnR,W , which
correspond to the arrival of the reading instance that will first
use the new data published in the preceding publishing point
PnR,W . Figure 6 shows publishing and reading points for a case
where TW = 5 and TR = 2.

Fig. 5: Publishing and reading points when the reader has
larger period than the writer.

Fig. 6: Publishing and reading points when the reader has
smaller period than the writer.

The publishing and reading points of two communicating
tasks can be computed as a function of their periods, as shown
in the next theorem.

Theorem 1. Given two communicating tasks τW and τR, the
publishing and the reading points can be computed as

PnW,R =

⌊
nTmax

TW

⌋
TW (1)

QnW,R =

⌈
nTmax

TR

⌉
TR (2)

where Tmax = max(TW , TR)

Proof. If the writer τW has a smaller or equal period than
the reader τR, i.e., TW ≤ TR as in Figure 5, there is one
publishing and one reading point for each reading instance.

Reading points trivially correspond to each reading task re-
lease, i.e., QnW,R = n ·TR, while publishing points correspond
to the last writer release before such a reading instance, i.e.,
PnW,R = bn · TR/TW c · TW .

Otherwise, when the writer τW has a larger period than
the reader τR, i.e., TW ≥ TR as in Figure 6, there is one
publishing and one reading point for each writing instance.
Publishing points trivially correspond to each writing task
release, i.e., PnW,R = n · TW , while reading points correspond
to the last reader release before such a writing instance, i.e.,
QnW,R = dn · TW /TRe · TR.

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR,
the formulas for PnW,R and QnW,R are generalized by Equations
(1) and (2). Note that, when TW = TR, PnW,R = QnW,R =
nTW .

Two communicating tasks τW and τR have harmonic peri-
ods if the period of one of them is an integer multiple of the
other. When a harmonic synchronous communication (HSC)
is established, the following relations hold: LCM(TW , TR) =
Tmax and PnW,R = QnW,R = nTmax, i.e., publishing and
reading points are integer multiples of the largest period
of the communicating tasks. On the other hand, when two
communicating tasks do not have harmonic periods, a non-
harmonic synchronous communication (NHSC) is established.
The general formulas of Theorem 1 apply.

V. END-TO-END LATENCY ANALYSIS

An effect chain is a producer/consumer relationship between
runnables working on labels. As mentioned in the introduction,
effects chains are assumed to be triggered by an external event
or a task release. The first task in the chain produces an output
(i.e., writes to a label) for another task following in the event
chain. The second task reads the label to write an output to a
different label, which may be then read by a third task, and
so on. When the last task produces its final output, the event
chain is over. See Figure 1, 2 and 3.

In [24], four different end-to-end timing semantics are
described to characterize the timing delays of effect chains
given by multi-rate tasks communicating by means of shared
variables. Depending on the application requirements, different
end-to-end delay metrics can be of interest. Control systems
driving external actuators are interested in the age of an input
data, i.e., for how long a given sensor data will be used to take
actuation decisions. For example, how long a radar or camera
frame will be used as a valid reference by a localization or
object detection system to perceive the environment: the older
the frame, the less precise the system. Similar considerations
are valid for an engine control or a fuel injection system, where
correct actuation decisions depend on the freshness of sensed
data.

Another metric of interest is the reaction latency to a change
of the input, i.e., how long does it take for the system to react
to a new sensed data. Multiple body and chassis automotive
applications are concerned with this metric. For example, for
a door locking system, it is important to know the time it takes
to effectively lock the doors after receiving the corresponding
signal. Due to space constraints, in this work we only cover



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 7: Age latency of an effect chain composed of three tasks.

age latency. However, similar results apply also for reaction
latency.

To more formally characterize age latency, consider Figure
7, showing an event chain triggered by a periodic sensor. The
upper task reads the sensor data, elaborates it, and shares the
result with the next task. And so on, until the end of the event
chain. Green arrows denote when an input is propagated to
the next task. In this case, we call it a valid input. Red arrows
correspond to elaborations that are not propagated, also called
invalid inputs, because they are overwritten before being read
by the next task in the chain.

The age latency is defined as the delay between a valid
sensor input until the last output related to this input in the
event chain. It measures for how long an input continues
influencing the final output of the event chain. In [24], age
latency is also referred to as last-to-last (L2L). However, no
method is presented to formally compute these metrics.

As discussed in the previous section, the LET model re-
quires that inputs and outputs be logically updated at reading
and publishing points, respectively. To see its effect on end-to-
end latency, let’s apply its semantics to the examples shown
in Figure 1 and 2. The results are shown in Figure 8, where
it is easy to see that the age latency is the same in both
cases. Clearly, this communication pattern allows not only
deterministically setting publishing and reading points, but
also setting the age latency of an effect chain to a fixed value,
regardless of the actual execution time and core allocation of
the involved communicating tasks. In this way, it is possible
to achieve a higher level of predictability and a stronger
consistency between the timing constraints (logical model)
and the task execution (physical model), thus facilitating the
design, implementation, test and certification process [25].

However, in the NHSC case, the above property does not
hold. Consider the example shown in Figure 9a, end-to-end
latencies are either 18 or 21, with a worst-case age latency
of 21. However, assigning an offset of 1 to τ3, as depicted
in Figure 9b, reduces the worst-case age latency to 19, with
zero jitter. This shows that by properly assigning offsets it is
possible to improve control performance of NHSC, reducing
the predictability gap in comparison with HSC by decreasing
worst-case age latency and reducing jitter.

In order to understand how to properly assign offsets, we
first generalize Theorem 2 to consider offsets.

Theorem 2. Given two communicating tasks τW and τR,

(a)

(b)

Fig. 8: End-to-end effect chain with LET composed of three
tasks with parameters: T1 = 5, T2 = 10, T3 = 20 with (a)
C1 = C2 = C3 = 1 and (b) C1 = 3, C2 = 2, C3 = 3.

with offsets OW and OR, respectively, the publishing and the
reading points can be computed as

PnW,R = OW +

⌊
nTmax +Omax −OW

TW

⌋
TW (3)

QnW,R = OR +

⌈
nTmax +Omax −OR

TR

⌉
TR (4)

where Tmax = max(TW , TR), and Omax is the offset of the
task with the largest period in the pair.

Proof. The proof is very similar to that of Theorem 1. If
the writer τW has a smaller or equal period than the reader
τR, i.e., TW ≤ TR as in Figure 10, there is one publishing
and one reading point for each reading instance. Reading
points again correspond to each reading task release, this time
including offset: QnW,R = OR+n·TR, while publishing points
correspond to the last writer release before such a reading
instance, i.e., PnW,R = OW +b(n ·TR+OR−OW )/TW c ·TW .

Otherwise, when the writer τW has a larger period than
the reader τR, i.e., TW ≥ TR as in Figure 11, there is one
publishing and one reading point for each writing instance.

Publishing points correspond to each writing task release,
including offset: PnW,R = OW + n · TW ,

while reading points correspond to the last reader release
before such a writing instance, i.e., QnW,R = OR+ d(n ·TW +
OW −OR)/TRe · TR.

In both cases, the formula for PnW,R and QnW,R are gener-
alized by Equations (3) and (4).



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

(a)

(b)

Fig. 9: End-to-end effect chains with LET composed of three
tasks with parameters (a) T1 = 3, O1 = 0, T2 = 7, O2 =
0, T3 = 3, O3 = 0 with C1 = C2 = C3 = 1 and (b) T1 =
3, O1 = 0, T2 = 7, O2 = 0, T3 = 3, O3 = 1 with C1 = C2 =
C3 = 1

Fig. 10: Publishing and reading points with offsets with TW =
2, OW = 1, TR = 5, OR = 2.

Clearly, the above theorem generalizes Theorem 1. When
TW = TR, it can again be verified that each writing (resp.
reading) task release correspond to a publishing (resp. reading)
point.

In the following, we consider an EC composed of η tasks,
where tasks are ordered according to their appearance in
the considered effect chain, i.e., τ1 is the first (writing)
task, while τη is the last (reading) task in the EC. Let us
define the hyperperiod HEC of an EC as the least common
multiple of the periods of the tasks composing the chain, i.e.,

Fig. 11: Publishing and reading points with offsets with TW =
5, OW = 2, TR = 2, OR = 1.

HEC = LCMη
i=1(Ti). Given all the publishing and reading

points of the tasks composing an EC in its hyperperiod HEC ,
we would like to compute the age latency of this chain. There
is a fixed number of possible communication paths in HEC .
To characterize them, we define the notion of basic path, as
an interval starting from the end of the period of the first
task in the EC, and finishing with the release of the last task
in the EC. For example, in the EC of Figure 12 there are
three basic paths in the highlighted hyperperiod HEC = 21:
[21, 30], [27, 36] and [33, 42]. Note that if all tasks in the EC
have harmonic periods, then there is only one basic path in the
hyperperiod. In this case, the length of the basic path equals
the sum of the periods of all tasks in the EC excluding the
first task in the chain. In the examples of Figure 8a and 8b,
there is only one basic path [10, 20].

To determine basic path boundaries, given a reading point
Q
xη
η−1,η at the end of an EC, Algorithm 1 shows how to derive

the corresponding starting point P x2
1,2 at the beginning of the

considered EC. As an example, consider the EC shown in
Figure 12, where the communication between the last two
tasks in the chain, τ2 and τ3, exhibits the three reading points
highlighted in bold: 30, 36 and 42. The EC is formed by three
tasks, i.e., η = 3, with no offsets. Algorithm 1 performs the
following steps:

(i) solve Qx3
2,3 = dx3 ·max(T2, T3)/T3e · T3 for x3;

(ii) compute the corresponding P x3
2,3;

(iii) find the reading point Qx2
1,2 preceding P x3

2,3, by deriving
the largest x2 that satisfies Qx2

1,2 = dx2 · max(T1, T2)/T2e ·
T2 < P x3

2,3; and
(iv) compute the start P x2

1,2 of the basic path.
Consider the example for reading point Qx3

2,3 = 30. We then
obtain:

(i) 30 = dx3 · max(7, 3)/3e · 3 = dx3 · 7/3e · 3, and so
x3 = 4;

(ii) P x3
2,3 = P 4

2,3 = b4 ·max(7, 3)/7c · 7 = 28;
(iii) solve Qx2

1,2 = dx2 ·max(3, 7)/7e·7 = 7·x2 < P 4
2,3 = 28

for x2, where the largest x2 that satisfies the inequality is
x2 = 3;

(iv) compute P x2
1,2 = P 3

1,2 = b3 ·max(3, 7)/3c · 3 = 21.
Repeating the same steps with Qx3

2,3 = 36 (resp. Qx3
2,3 = 42

), we obtain P 4
1,2 = 27 (resp. P 5

1,2 = 33), matching the values
in Figure 12.

Applying Algorithm 1 to all the reading points Q
xη
η−1,η

corresponding to the communication between τη−1 and τη
in a given hyperperiod HEC provides the boundaries of all



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

meaningful basic paths to consider. Observe that paths starting
with the same publishing point P x2

1,2 of a previous path are not
to be considered.

Let us define ṖnW,R (resp. Q̇nW,R) as the publishing (resp.
reading) point between two tasks τW and τR in the n-th basic
path of an EC. Then, the n-th basic path in the EC starts at
Ṗn1,2 and ends at Q̇nη−1,η. See Figure 12. In the example, the
first basic path in this HEC is defined by Ṗ 1

1,2 = P 3
1,2 = 21

and Q̇1
2,3 = Q4

2,3 = 30. Similarly, the bounds of the second
(resp. third) basic path are Ṗ 2

1,2 = P 4
1,2 = 27 (resp. Ṗ 3

1,2 =

P 5
1,2 = 33), and Q̇2

2,3 = Q5
2,3 = 36 (resp. Q̇3

2,3 = Q6
2,3 = 42).

Fig. 12: End-to-end effect chain characterization with LET
composed of three tasks with parameters T1 = 3, O1 =
0, T2 = 7, O2 = 0, T3 = 3, O3 = 0.

Once the boundaries of the n-th basic path are known, its
length θnEC can be simply computed as θnEC = Q̇nη−1,η− Ṗn1,2.
If we assume the EC is triggered by the release of the first
task in the chain, the age latency αn associated to the n-th
basic path can then be computed by adding to the basic path
length (i) the period T1 of the first task in the EC, and (ii) the
distance to the end of the next (n + 1)-th basic path, where
the output of the EC will eventually reflect a new input signal.
That is,

αn = T1 + θnEC + Q̇n+1
η−1,η − Q̇nη−1,η. (5)

The worst-case age latency α(EC) of the EC is then given
by the maximum αn over all basic paths in a hyperperiod of
the EC.

α(EC) = max
∀n∈HEC

αn. (6)

In our previous example, θ1EC = θ2EC = θ3EC = 9. Moreover,
α1 = T1 + θ1EC + Q̇2

2,3 − Q̇1
2,3 = 3 + 9 + 36− 30 = 18,

α2 = T1 + θ2EC + Q̇3
2,3− Q̇2

2,3 = 3 + 9 + 42− 36 = 18, and
α3 = T1 + θ3EC + Q̇4

2,3 − Q̇3
2,3 = 3 + 9 + 51− 42 = 21,

as illustrated in Figure 12. Thus, α(EC) =
max(α1, α2, α3) = max(18, 18, 21) = 21.

VI. HEURISTICS

In the previous sections, we showed how an offset-aware
LET analysis may be used to improve real-time performance.

Algorithm 1 Calculating the start of a basic path
1: Input: Task set {τi}, Q

xη
η−1,η

2: Find xη in Qxηη−1,η using Eq. (4)
3: Compute P xηη−1,η using Eq. (3)
4: for i=η...3 do
5: Find the largest xi−1 in Qxi−1

i−2,i−1 < P xii−1,i using Eq.
(4)

6: Compute P xi−1

i−2,i−1 using Eq. (3)

7: Return P x2
1,2

For this reason, given a schedulable task set, we are interested
in seeking an offset assignment method that shortens the age
latency of a selected EC, possibly making it constant through-
out the whole execution of the tasks involved. This could
be particularly useful for automotive applications where there
are no design constraints on offsets. It is worth mentioning
that while offset assignment can shorten the age latency of a
particular EC, it might also potentially lengthen the end-to-end
latency of another chain. On the other hand, effect chains, very
much like tasks, are also prioritized, i.e., not all latencies have
the same importance. One EC might be particularly important
for the stability and control of the system, while other ones
may be related to less critical activities. We hereafter focus
on the latency minimization problem of a selected EC. The
method can also be applied to multiple ECs as long as they
have no task in common. The latency minimization problem
of multiple ECs having one or more tasks in common is left
as a future work.

Without loss of generality, offsets can be normalized as-
suming O1 = 0 and Oi ∈ [0, Ti〉, ∀i ∈ [2, η]. It is worth
pointing out that the heuristics presented by Goossens in [20]
cannot be applied, as it has a different target, i.e., making a
task set schedulable, or reducing the worst-case response time
of an already schedulable task set, on a uniprocessor. A brute
force approach is not desirable for longer chains or when the
periods of the tasks involved are large, since the number of
combinations can get up to

∏η
i=2 Ti = O((maxηj=2Tj)

η−1)
for chains composed of different tasks. We therefore derive
a heuristics for a convenient offset assignment that can be
conveniently used to improve control performance within a
reasonable computational complexity.

Equation 5 can be rewritten as

αn = T1+Q̇nη−1,η−Ṗn1,2+Q̇n+1
η−1,η−Q̇nη−1,η = T1+Q̇n+1

η−1,η−Ṗn1,2

From Theorem 2, it follows that

αn = T1 +

⌈
(n′ + 1)max(Tη−1, Tη) +Oη−1,ηmax −Oη

Tη

⌉
Tη

+Oη −
⌊
n′′max(T1, T2) +O1,2

max −O1

T1

⌋
T1 −O1,

where Oi,jmax is the offset of the task with the largest period
among τi and τj , while n′ and n′′ are numbers defined by the
alignment, periods and offsets of the tasks composing the n-th
basic path of the EC. Let us define two integer values



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

k′ =

⌈
(n′ + 1)max(Tη−1, Tη) +On−1,nmax −Oη

Tη

⌉
and

k′′ = 1−
⌊
n′′max(T1, T2) +O1,2

max −O1

T1

⌋
. Then,

αn = k′Tη + k′′T1 +Oη −O1

Recalling that O1 = 0,

αn = k′Tη + k′′T1 +Oη

The last equation shows that the age latency of an EC can be
computed as the sum of a multiple of the period of the first
and of the last task in the chain, plus the offset of the last
task. This does not mean that the tasks in the middle of the
chain have no influence on the age latency. Their contribution
is hidden within k′ and k′′, which may increase or decrease
the age latency by integer multiples of the period of the first
and last task in the EC.

Algorithm 2 proposes a heuristic approach to assign offsets
that considers only the last d tasks in the EC, starting from the
last task τη . The remaining η − d tasks are assumed to have
a null offset. In this way, the total number of combinations is
reduced to

∏η
i=η−d+1 Ti = O((maxηj=η−d+1Tj)

d). Note that
d < η and O1 = 0. Furthermore, d = η − 1 is equivalent to
the brute force approach.

The complexity can be further reduced by considering
only non-equivalent offset assignments. Two asynchronous
situations are defined to be equivalent, if they have the same
periodic behavior. For two tasks τ1 and τ2, two choices O2 and
O′2 are equivalent if they produce the same relative phasing,
i.e.,

∃k ∈ N : O2 mod T1 = (O′2 + kT2) mod T1.

As an example, consider τ1 and τ2 with T1 = 8, T2 = 12,
O1 = 0 and O2 < T2. The offset assignment O2 = 0
is equivalent to O′2 = 4 and to O′′2 = 8, since they all
lead to the same job interleaving throughout the hyperperiod
LCM(T1, T2) = 24. Similarly, O2 = 1 is equivalent to
O′2 = 5 and to O′′2 = 9. In general, two offset assignments
O2 and O2′ are equivalent if O2 = O′2 mod GCD(T1, T2),
as shown in [20]. Therefore, it makes sense to consider only
the offsets in [0, GCD(T1, T2)〉.

For later tasks in the effect chain, similar considerations ap-
ply by considering their alignment with respect to the hyperpe-
riod of earlier tasks. E.g., for task τ3, it is sufficient to consider
its non-equivalent alignments with respect to the hyperperiod
of τ1 and τ2, i.e., O3 ∈ [0, GCD{T3, LCM(T1, T2)}〉. In
general, assuming the offsets O1, . . . , Oi−1 have been set, for
τi it is sufficient to consider

Oi ∈ [0, GCD{Ti, LCM i−1
j=1Tj}〉,∀i ∈ [2, η]

Thus, the number of possible combinations of the brute force
approach is reduced to

η∏
i=2

GCD
{
Ti, LCM

i−1
j=1Tj

}
.

Since x · y = GCD(x, y) · LCM(x, y), this simplifies to
η∏
i=2

Ti · LCM i−1
j=1Tj

LCM(Ti, LCM
i−1
j=1Tj)

=

η∏
i=2

Ti · LCM i−1
j=1Tj

LCM i
j=1Tj

=

∏η
i=1 Ti

LCMη
i=1Ti

.

The complexity of the brute force approach is then∏η
i=1 Ti/HEC . This entails a significant reduction in the

complexity, especially in case of mutually prime periods. Note
that in case all periods are mutually prime, there is only one
configuration to check.

Similarly, the number of offset assignments leading to
non-equivalent asynchronous situations given by the d-offset
assignment algorithm can be derived as

η∏
i=η−d+1

GCD
{
Ti, LCM

i−1
j=1Tj

}

=

η∏
i=η−d+1

Ti · LCM i−1
j=1Tj

LCM(Ti, LCM
i−1
j=1Tj)

=

η∏
i=η−d+1

Ti · LCM i−1
j=1Tj

LCM i
j=1Tj

=
LCMη−d

i=1 Ti ·
∏η
i=η−d+1 Ti

LCMη
i=1Ti

.

Let Hd = HEC/LCM
η−d
i=1 Ti. The complexity of the d-offset

assignment algorithm is then (
∏η
i=η−d+1 Ti)/Hd.

Algorithm 2 d-Offset assignment
1: Input: Task set {τi}, depth d
2: Assign Oi = 0, ∀i ∈ [1, η − d]
3: Consider all combinations of offset assignments leading

to non-equivalent asynchronous situations ∀τi, i ∈ [η −
d+ 1, η]

4: for each combination do
5: Compute the worst-case age latency of this combina-

tion using Equation (6)
6: Return the maximum age latency among all combinations

VII. EXPERIMENTS

Having established a thorough analytical characterization of
the end-to-end latencies of effect chains under the Logical
Execution Time communication model, we hereafter provide
an experimental characterization of the effectiveness of LET
in improving the control performance by reducing the vari-
ability of the end-to-end latency. Moreover, we show how
the proposed offset assignment technique can be adopted to
further reduce such a variability in case an even tighter control
performance is needed.

To this end, we performed two sets of experiments. The
first set considers an industrial case study from the automotive
domain, providing a characterization of the analytical perfor-
mance of LET in a representative setting. The second set
of experiments is based on randomly generated effect chains
composed of tasks with a different period distribution, to
characterize the effectiveness of the offset assignment methods
in further reducing jitter. The experiments were conducted on
top of a quad-core processor i7-4720HQ @ 2.6 GHz with
16GB of RAM.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

A. Industrial case study

To provide a representative characterization of the end-to-
end latencies introduced by LET, we considered an automotive
application representing an engine control system, as detailed
by Kramer et al. in [26]. The application is composed of
multiple tasks partitioned onto four cores. The periods of the
tasks are {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms. Tasks
are composed of 1250 runnables that access about 1500
different labels. We considered the effect chains created by
tasks reading/writing a common shared variable. Based on this
setting, there are over 500 ECs with length 3 ≤ η ≤ 8.

Figure 13 shows the average value of the worst-case age
latency α(EC) obtained with LET among the considered
effect chains for each EC length. As can be expected, the age
latency increases proportionally with the length of the chain.
An analysis on the individual EC shows that the worst-case
age latency is never smaller than the sum of the periods of the
tasks composing the considered EC.

0

200

400

600

800

1000

1200

1400

1600

3 4 5 6 7 8

W
o

rs
t-

ca
se

 a
g

e
 l

a
te

n
cy

Chain length

Fig. 13: Average value of the worst-case age latency for the
considered effect chains.

More interestingly, the LET model allows significantly
reducing the jitter of the end-to-end latency of an effect chain.
We define the jitter of an EC as

J(EC) = max
∀n∈HEC

αn − min
∀n∈HEC

αn.

Figure 14 shows the normalized jitter (J(EC)/α(EC)), i.e.,
the ratio of the jitter over the age latency. Both average and
worst-case values over all effect chains are shown for each
considered length. The average jitter is always below 1%,
confirming that LET is very effective in reducing end-to-
end latency variability, with longer chains exposing a slightly
smaller normalized jitter. However, for all considered EC
lengths, there are different cases where the jitter is above 10%
of the overall age latency.

In order to further improve the end-to-end control perfor-
mances, we applied the offset assignment method of Algorithm
2. To compute the offset for all the effect chains, the algorithm
required about 30 minutes for d = 1 and 3 hours for d = 2.
Even using a small depth d = 1 (resp. d = 2) allowed
improving the worst-case age latency for 206 (resp. 377) out
of the 577 considered effect chains. The improvement obtained
for these ECs is shown in Figure 15 both for d = 1 and d = 2.

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 J
it

te
r 

(%
)

Chain length

Average

Maximum

Fig. 14: Average and maximum values of the normalized jitter
for the considered effect chains.

In general, a small depth allows significantly improving the
age latency of shorter chains (10% on average, 30% in the
best case). A larger depth value allows improving the latency
of longer chains, by paying a higher computational cost.

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t 

(%
)

Chain length

Average

Maximum

0

5

10

15

20

25

30

35

3 4 5 6 7 8

W
o

rs
t-

C
a

se
 a

g
e

 l
a

te
n

cy
 i

m
p

ro
v
e

m
e

n
t 

(%
)

Chain length

Average

Maximum

Fig. 15: Average and maximum age latency improvement
provided by the offset assignment heuristics with depth d = 1
(left) and d = 2 (right).

Another interesting effect of the offset assignment technique
is to decrease the jitter. Note that effect chains composed
of harmonic tasks have all a null jitter. In the considered
automotive use case, the great majority of effects chains are
harmonic, due to the selection of task periods. Therefore, the
average and maximum jitter shown in Figure 14 is due to a few
non-harmonic effect chains, 32 of which had a non-null jitter.
With our offset assignment method, the jitter is reduced to zero
for 9 of them with d = 1. Figure 16 shows the average and
best-case improvement in the jitter normalized with respect
to the age latency, i.e., ∆J(EC)/α(EC), for the case with
d = 2.

B. Randomly generated workloads

A second set of experiments is provided to characterize
the efficiency of the proposed heuristics with respect to a
brute force approach. Unfortunately, the industrial use case
adopted in the previous section is not amenable to a brute
force approach because of the large range of task periods,
which makes it too computationally expensive. Therefore,
we synthetically generated 500 effect chains composed of
randomly generated tasks with periods uniformly distributed
in [1, 10]. We considered effect chains with η ∈ [3, 6]. Note
that there is no need to generate utilizations and execution



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8

R
e

la
ti

v
e

 j
it

te
r 

im
p

ro
v
e

m
e

n
t 

(%
)

Chain length

Average

Maximum

Fig. 16: Average and maximum normalized jitter improvement
provided by the offset assignment heuristics with depth d = 2

times, since tasks are assumed to always complete before their
(implicit) deadlines, as stated in section IV.

To understand the performance of the proposed heuristics
in exploring the design space to select an optimal offset
assignment, we provide a characterization based on the depth
d value that allows achieving an optimal end-to-end latency.
In this experiment, we first computed the optimal offsets
using a brute force approach. Then, we ran Algorithm 2 with
increasing depth values, starting with d = 1, to compare the
resulting worst-case age latency with that of the brute force
algorithm. When they matched, the algorithm was stopped
recording the d value. Figure 17 shows the normalized depth
r, defined as the ratio between the resulting d and the length
of the EC, i.e., r = d/η. Interestingly, an optimal assignment
is obtained even with a very small depth. In more than 60 %
of the cases, r is lower than or equal to 1/3, indicating that the
proposed heuristics can be conveniently adopted to reduce age
latencies even using a small depth d. The computation time of
the offset minimization algorithm was variable, varying from
a few seconds to a few hours, depending on the chain depth
and on the periods of the communicating tasks.

0

50

100

150

200

250

r=1/5 r=1/4 r=1/3 r=2/5 r=1/2 r=3/5 r=2/3 r=3/4 r=4/5

N
u

m
b

e
r 

o
f 

E
C

s

Fig. 17: Heuristics vs. Brute force approach.

VIII. CONCLUSION

We provided an analytical characterization of the end-
to-end latency of effect chains composed of periodic tasks

communicating using the LET model. A closed formula ex-
pression was provided to compute reading and publishing
points where the actual communication between tasks takes
place. Based on these points, the end-to-end latency may be
computed considering the basic paths of an effect chain within
a hyperperiod of the communicating tasks. The analysis was
then extended to consider task offsets. An offset assignment
method was suggested to further improve the determinism
of the end-to-end latency, reducing control jitter. We finally
showed the effectiveness of the LET model in achieving
a more deterministic end-to-end communication delay for
an industrial case study from the automotive domain. We
presented a set of experiments showing that the jitter of
the end-to-end latency with the LET model is in average
within 1% for representative task sets, analytically confirming
the control determinism of the LET model. However, non-
harmonic effect chains may have significantly higher jitters.
In these cases, a considerable jitter reduction can be obtained
using the proposed offset assignment heuristics.

As a future work, we intend to analytically and experimen-
tally compare end-to-end age and reaction delays for the LET
model against the implicit and explicit communication coun-
terparts. While the LET model allows significantly reducing
the variability in the end-to-end communication delays, the
absolute latencies tend to be higher than those with other
communication paradigms where tasks publish their computed
result at an earlier time. We believe that a thorough comparing
study is in order to understand pros and cons of each commu-
nication model, paving the way towards a generalized method
that allows obtaining smaller end-to-end latencies within a
reduced jitter.

ACKNOWLEDGMENT

This work was supported by the I-MECH (Intelligent Mo-
tion Control Platform for Smart Mechatronic Systems), funded
by European Union’s Horizon 2020 ECSEL JA 2016 research
and innovation program under grant agreement No. 737453.

REFERENCES

[1] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), ser.
Leibniz International Proceedings in Informatics (LIPIcs), M. Bertogna,
Ed., vol. 76. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
pp. 10:1–10:20.

[2] J. Martinez, I. Sañudo, P. Burgio, and M. Bertogna, “End-to-End
Latency Characterization of Implicit and LET Communication Models,”
in International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), ser. Leibniz International
Proceedings in Informatics (LIPIcs), M. Bertogna, Ed., vol. 76, 2017.

[3] P. Marti, R. Villa, J. M. Fuertes, and G. Fohle, “On real-time control
tasks schedulability,” in 2001 European Control Conference (ECC), Sept
2001, pp. 2227–2232.

[4] S. Lampke, S. Schliecker, D. Ziegenbein, and A. Hamann, “Resource-
aware control-model-based co-engineering of control algorithms and
real-time systems,” vol. 8, no. 2015-01-0168, 2015, pp. 106–114.

[5] A. Hamann, D. Ziegenbein, S. Kramer, and M. Lukasiewycz, “2017
formals methods and timing verification (fmtv) challenge,” 2017, pp.
1–1.

[6] R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency
computation in a multi-periodic design,” in Proceedings of the 28th
Annual ACM Symposium on Applied Computing, ser. SAC ’13. New
York, NY, USA: ACM, 2013, pp. 1682–1687.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857398, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

[7] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, “From
control models to real-time code using giotto,” IEEE Control Systems,
vol. 23, no. 1, pp. 50–64, Feb 2003.

[8] K. Tindell, “Adding time-offsets to schedulability analysis,” 2007.
[9] N. Audsley, “On priority assignment in fixed priority scheduling,”

Information Processing Letters, vol. 79, no. 1, pp. 39 – 44, 2001.
[10] J. C. Palencia, M. G. Harbour, J. J. Gutirrez, and J. M. Rivas, “Response-

time analysis in hierarchically-scheduled time-partitioned distributed
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 7, pp. 2017–2030, July 2017.

[11] M. Nasri, R. I. Davis, and y. Björn B. Brandenburg, “Fifo with offsets:
High schedulability with low overheads.”

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a time-
triggered language for embedded programming,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 84–99, Jan 2003.

[13] C. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems, 2012, pp. 103–120. [Online].
Available: /pubpdf/ARTS-chapter.pdf

[14] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,” in
The 22th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, August 2016.

[15] ——, “End-to-end timing analysis of cause-effect chains in automotive
embedded systems,” Journal of Systems Architecture, vol. 80, no.
Supplement C, pp. 104 – 113, 2017.

[16] K.-B. Gemlau, J. Schlatow, M. Möstl, and R. Ernst, “Compositional
analysis for the waters industrial challenge 2017,” in International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), Dubrovnik, Croatia, jun 2017.

[17] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in Proceedings 19th IEEE Real-Time
Systems Symposium (Cat. No.98CB36279), Dec 1998, pp. 26–37.

[18] O. Redell and M. Torngren, “Calculating exact worst case response times
for static priority scheduled tasks with offsets and jitter,” in Proceedings.
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002, pp. 164–172.

[19] J. C. Palencia, M. G. Harbour, J. J. Gutirrez, and J. M. Rivas, “Response-
time analysis in hierarchically-scheduled time-partitioned distributed
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 7, pp. 2017–2030, July 2017.

[20] J. Goossens, “Scheduling of offset free systems,” Real-Time Syst.,
vol. 24, no. 2, pp. 239–258, Mar. 2003.

[21] M. Grenier, L. Havet, and N. Navet, “Pushing the limits of CAN -
scheduling frames with offsets provides a major performance boost,” in
4th European Congress on Embedded Real Time Software (ERTS 2008),
Toulouse, France, 2008.

[22] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, “Multisource
software on multicore automotive ecus; combining runnable sequencing
with task scheduling,” IEEE Transactions on Industrial Electronics,
vol. 59, no. 10, pp. 3934–3942, Oct 2012.

[23] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[24] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in IEEE Real-Time Systems Symposium:
30/11/2009-03/12/2009. IEEE Communications Society, 2009.

[25] T. Kloda, B. d’Ausbourg, and L. Santinelli, “Edf schedulability test for
the e-tdl time-triggered framework,” in 2016 11th IEEE Symposium on
Industrial Embedded Systems (SIES), May 2016, pp. 1–10.

[26] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

Jorge Martinez is a doctoral candidate at the Uni-
versity of Modena in Italy working in close co-
operation with Robert Bosch GmbH in Germany,
where he used to work as a software architect. He
earned his B.Sc. in Electronic Engineering from the
National University of Engineering, Peru, and re-
ceived his M.Eng. in Electrical Engineering and Em-
bedded Systems from the Ravensburg-Weingarten
University of Applied Sciences, Germany. His main
interests are real-time systems and artificial intelli-
gence. His favorite place to do research is his home,

which opens to the German Black Forest.

Ignacio Sañudo received his B.Sc. in Computer Sci-
ence Engineering from the University of Cantabria,
Spain, in 2014, and his Ph.D. in Computer Sci-
ence from the University of Modena and Reggio
Emilia, Italy, in 2018. He is currently a Post-
Doctoral Researcher at the High-Performance Real-
Time (HiPeRT) Lab (University of Modena and Reg-
gio Emilia). His current research interests include
hard real-time systems, autonomous and intelligent
systems, as well as safety, reliability, and software
engineering.

Marko Bertogna is Associate Professor at the Uni-
versity of Modena (Italy), where he leads the High-
Performance Real-Time (HiPeRT) Lab. His main
interests are in Real-Time systems for multi- and
many-core devices, autonomous driving and indus-
trial automation systems, with particular relation to
related timing and safety requirements. Previously,
he was Assistant Professor at the Scuola Superiore
Sant’Anna of Pisa, where he received a PhD in
Computer Sciences with a dissertation awarded with
the ”Giovanni Spitali” award. He has authored more

than 100 papers, receiving the 2009 Best Paper Award for the IEEE Transac-
tions on Industrial Informatics, and 7 other Best Paper Awards in first level
international conferences. He has been Member of the Program Committee of
several major conferences on real-time and embedded computing, and Member
of the Editorial Board of three international journals. He is Senior Member of
the IEEE, and Stakeholder Member of the European Network of Excellence
on High Performance and Embedded Architecture and Compilation (HiPEAC)


